首页> 外文OA文献 >Fine-Grained Categorization via CNN-Based Automatic Extraction and Integration of Object-Level and Part-Level Features
【2h】

Fine-Grained Categorization via CNN-Based Automatic Extraction and Integration of Object-Level and Part-Level Features

机译:基于CNN的自动提取和maTLaB的细粒度分类   对象级和部件级功能的集成

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Fine-grained categorization can benefit from part-based features which revealsubtle visual differences between object categories. Handcrafted features havebeen widely used for part detection and classification. Although a recent trendseeks to learn such features automatically using powerful deep learning modelssuch as convolutional neural networks (CNN), their training and possibly alsotesting require manually provided annotations which are costly to obtain. Torelax these requirements, we assume in this study a general problem setting inwhich the raw images are only provided with object-level class labels for modeltraining with no other side information needed. Specifically, by extracting andinterpreting the hierarchical hidden layer features learned by a CNN, wepropose an elaborate CNN-based system for fine-grained categorization. Whenevaluated on the Caltech-UCSD Birds-200-2011, FGVC-Aircraft, Cars and Stanforddogs datasets under the setting that only object-level class labels are usedfor training and no other annotations are available for both training andtesting, our method achieves impressive performance that is superior orcomparable to the state of the art. Moreover, it sheds some light on ingenioususe of the hierarchical features learned by CNN which has wide applicabilitywell beyond the current fine-grained categorization task.
机译:细分类可以受益于基于零件的功能,这些功能揭示了对象类别之间的细微视觉差异。手工制作的特征已广泛用于零件检测和分类。尽管最近的趋势是寻求使用强大的深度学习模型(例如卷积神经网络(CNN))自动学习这些功能,但是它们的训练以及可能的测试也需要人工提供的注释,而这些注释的获取成本很高。为了满足这些要求,我们在本研究中假设一个一般性的问题设置,其中原始图像仅带有对象级类标签以进行模型训练,而无需其他辅助信息。具体来说,通过提取和解释CNN所学习的分层隐藏层特征,我们提出了一种基于精细CNN的精细分类系统。当在Caltech-UCSD Birds-200-2011,FGVC-Aircraft,Cars和Stanforddogs数据集上进行评估时,仅使用对象级类标签进行训练,而没有其他注释可用于训练和测试,我们的方法可实现令人印象深刻的性能与现有技术相比是优越的或可比的。此外,它还揭示了CNN所学的分层功能的巧妙使用,其具有广泛的适用性,远远超出了当前的细粒度分类任务。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号